F	Reg. No:		
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTU	R	
	(AUTONOMOUS) B. Tech II Year I Semester Supplementary Examinations November-202	22	
	ELECTROMAGNETIC FIELDS		
т	(Electrical and Electronics Engineering)	1	(0)
1	ime: 3 hours (Answer all Five Units $5 \times 12 = 60$ Marks)	viarks	5: 60
	UNIT-I		
	a Find the distance from A (r=4, θ =20° & ϕ =120°) B ((r=2,\theta=80° & \phi=30°)	L3	6M
	b Give the cartesian coordinates of the Point who's cylindrical are r=4, ϕ =45° & Z=2).	L3	6N
	OR a Determine the divergence of these vector fields if $P=x^{-2}yz a_x +xz a_z$	L3	6M
	b Find the gradient of the following scalar fields if $V = e^{-z} \sin 2x \cosh y$	L3	6M
	UNIT-II		
	a An infinitely long uniform line charge is located at y=3, Z=5. If ρ_L = 30 n C/m, find	L3	6 M
	the filed intensity E at i) origin, ii) $P(0,6,1)$ and iii) $P(5,6,1)$	ТЭ	
	b A circular disc of 10 cm radius is charged uniformly with total charge of 100μc. Find E at a point 20cm on its axis.	L3	6N
	OR		
	a Two point charges 1.5nC at (0,0,0.1) and -1.5nC at (0,0,-0.1) are in free space. Treat	L3	6N
	the two charges as a dipole at the origin and find the potential at P(0.3,0,0.4) b In free space V= $x^2y(z+3)$. Find E at (3, 4, -6) and The charge within the cube	12	6N
	$0 \le x, y, z \le 1$.	LS	UIV
	UNIT-III		
	Explain the boundary conditions between conductor and free space.	L2	12N
	OR a A parallel plate capacitor has an area of 0.8 m^2 separation of 0.1 mm with a	L3	6N
	dielectric for which $\varepsilon_r = 1000$ and a field of 10^6 V/m. Calculate C and V.	LJ	UIV.
	b Derive Laplace's and Poisson's Equation.	L4	6M
	UNIT-IV		
	A Point charge of Q=-1.2 C has a velocity V= $(5 a_x + 2 a_y - 3a_z)m/s$. Find the	L3	12N
	magnitude of the force exerted on the charge if i) $E = -18 a_x + 5 a_y - 10 a_z V/m$ and ii) $B = -4 a_x + 4 a_y + 3 a_z T$		
	OR		
	a Calculate the inductance of a 10 m length of coaxial cable filled with a material for	L3	6N
	which $\mu_r = 80$ and radii inner and outer conductors are 1 mm and 4 mm respectively.		
	b Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical	L3	6N
	tube of 6 cm diameter. The length of the tube is 60 cm and the solenoid is in air.		
	UNIT-V		
	Explain faradays law of electromagnetic induction and derive the expression for induced a m f	L4	12N
	induced e.m.f. OR		
)	Write Maxwell's equation in good conductors for time varying fields and static fields	L4	12N
	both in differential and integral form.		
	*** END ***		

R20